Home  |  About us  |  Editorial board  |  Ahead of print  | Current issue  |  Archives  |  Submit article  |  Instructions |  Search  |   Subscribe  |  Advertise  |  Contacts  |  Login 
  Users Online: 902Home Print this page Email this page Small font sizeDefault font sizeIncrease font size  

 Table of Contents      
Year : 2011  |  Volume : 2  |  Issue : 4  |  Page : 145-148

Survival analysis in clinical trials: Basics and must know areas

1 Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
2 Department of Pharmacology, College of Medicine and JNM Hospital, Kalyani, West Bengal, India

Date of Web Publication31-Oct-2011

Correspondence Address:
Ritesh Singh
Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal - 741 235
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2229-3485.86872

Rights and Permissions

Many clinical trials involve following patients for a long time. The primary event of interest in those studies is death, relapse, adverse drug reaction or development of a new disease. The follow-up time for the study may range from few weeks to many years. A different set of statistical procedures are employed to analyze the data, which involves time to event an analysis. It is a very useful tool in clinical research and provides invaluable information about an intervention. This article introduces the researcher to the different tools of survival analysis.

Keywords: Cox proportional hazard model, hazard ratio, survival analysis

How to cite this article:
Singh R, Mukhopadhyay K. Survival analysis in clinical trials: Basics and must know areas. Perspect Clin Res 2011;2:145-8

How to cite this URL:
Singh R, Mukhopadhyay K. Survival analysis in clinical trials: Basics and must know areas. Perspect Clin Res [serial online] 2011 [cited 2023 Feb 1];2:145-8. Available from: http://www.picronline.org/text.asp?2011/2/4/145/86872

   Introduction Top

Clinical trials are conducted to assess the efficacy of new treatment regimens. The major events that the trial subjects suffer are death, development of an adverse reaction, relapse from remission, and development of a new disease entity. [1] Medical articles dealing with survival analysis often use Cox's proportional hazards regression model. These statistical models takes into consideration time until an event of interest occurs and compare the cumulative probability of events over time for two or more cohorts, while adjusting other influential covariates. This article outlines the must know areas of survival analysis and introduces the reader to often-used terms in the survival analysis.

   History of Survival Analysis Top

Survival analysis is a collection of statistical procedures for data analysis, for which the outcome variable of interest is time until an event occurs. It is the study of time between entry into observation and a subsequent event. The term 'Survival analysis' came into being from initial studies, where the event of interest was death. Now the scope of the survival analysis has become wide. Today scientists are using it for time until onset of disease, time until stock market crash, time until equipment failure, time until earthquake, and so on. [2] Common events studied are death, disease, relapse, and recovery. Few examples of studies where tools of survival analysis are used are: leukemia patients and time in remission, time to develop a heart disease for normal individuals, elderly population and time until death, and heart transplants and time until death. [3]

No one is sure of the birth of this statistical procedure. Probably it originated centuries ago, but only after World War II a new era of survival analysis has emerged, being stimulated by an interest in the reliability of military equipment. At the end of the war these newly developed statistical methods, emerging from strict mortality data research to failure time research, quickly spread through the private industry as customers became more demanding of safer, more reliable products.

   Life Table Analysis Top

In longitudinal studies it is often of interest to estimate a 'survival' curve for the population. What proportion of the population survive beyond a specified time interval without a particular event happening? [4] The most straightforward way to describe the survival in a sample is to compute the Life Table. The life table technique is one of the oldest methods for analyzing survival data. The distribution of survival times is divided into a certain number of intervals. For each interval we can then compute the number and proportion of cases or objects that entered the respective interval 'alive,' the number and proportion of cases that failed in the respective interval (number of terminal events, or number of cases that died), and the number of cases that were lost or censored (will be described later) in the respective interval. Based on those numbers and proportions, several additional statistics can be computed, such as, the number of cases at risk, proportion failing, proportion surviving, survival function, hazard rate, and median survival time. This procedure is used for larger samples where the time intervals are large enough to be broken down into smaller units. [5] By using the life table analysis we can find out the probability of whether a woman who retained an IUD for the first six months will still have it by the end of the twentieth month. Similarly we can find out if Mrs. A, who has retained her IUD until now (the beginning of the eleventh month) and Mrs. B, who has also retained her IUD until now (the beginning of the thirteenth month) will both lose their IUDs within the next six months.

   Some Common Terms Used in Survival Analysis Top


Most survival analyses consider a key analytical problem called censoring. It occurs when we have some information about individual survival time, but we do not know the survival time exactly. Three reasons of censoring are: When a person does not experience the event before the study ends, when a person is lost to follow-up during the study period, and when a person withdraws from the study because of death (if death is not the event of the interest) or some other reason like adverse drug reaction. Censoring is of two types, right and left. [6] We generally encounter right-censored data. Left-censored data can occur when a person's survival time becomes incomplete on the left side of the follow-up period for the person. As an example, we may follow up a patient for any infectious disorder from the time of his or her being tested positive for the infection. We may never know the exact time of exposure to the infectious agent.

Survival function

Survival function, S (t) gives the probability that a person survives longer than some specified time t . It gives the probability that the random variable T exceeds the specified time t . The survival function is fundamental to a survival analysis. The survivor function is often expressed as a Kaplan-Meier curve. The name is a misnomer as in the actual data case scenario we get the step functions rather than smooth curves. Vertical drop in a Kaplan-Meir curve indicates an event.

Hazard function

The hazard function h (t) gives the instantaneous potential per unit time for the event to occur, given the individual has survived up to time t. It is the probability of failure in an infinitesimally small time period between y and y + y given that the subject has survived up till time y. In this sense, the hazard is a measure of risk: The greater the hazard between times y1 and y2, the greater the risk of failure in this time interval. The hazard function has its own importance, as it provides an insight into the conditional failure rates; it may be used to identify a specific model form and it is the vehicle by which mathematical modeling of survival data is carried out.

Hazard ratio

Hazard ratio (HR) is akin to relative risk. It has been used to describe the outcome of therapeutic trials where the question is, to what extent can treatment shorten the duration of an illness. [7] The hazard ratio is an estimate of the ratio of the hazard rate in the treated versus the control group. For example if there are two groups, group 1 and group 2, HR = 4.5 for treatment means that the risk (of relapse) for group 2 is 4.5 times that of group 1. If HR = 1 then Group 1 h (t) = Group 2 h (t).

   Cox Proportional Hazards Model Top

Clinical trials commonly record the length of time from study entry to a disease endpoint for a treatment and a control group. These data are commonly depicted with a Kaplan-Meier curve, from which the median (time at which, in 50% of cases, an event of interest has occurred) and the mean (average time for the event) can be derived. There are several methods available to analyze time-to-event curves, such as Cox proportional hazards, log-rank, and Wilcoxon two sample tests. The Cox proportional hazards model has been the most widely used because of its applicability to a wide variety of clinical studies. [8] The Cox model was introduced by Cox, in 1972, for analysis of survival data with and without censoring, for identifying differences in survival due to treatment and prognostic factors (covariates or predictors or independent variables) in clinical trials. The Cox model is a regression method for survival data. It provides an estimate of the hazard ratio and its confidence interval. Cox regression is considered a 'semi-parametric' procedure because the baseline hazard function, h 0 (t), does not have to be specified. There are two assumptions about the Cox proportional hazard model: The hazard ratios of two people are independent of time, and are valid only for time-independent covariates. This means that the hazard functions for any two individuals at any point in time are proportional. In other words, if an individual has a risk of death at some initial point in time that is twice as high as that of another individual, then at all later times the risk of death remains twice as high.

In a survival study, one should ensure that patients are not removed from the study just before they die. Survival studies often recruit patients over a long period of time and so it is also important to verify that other factors remain constant over the period, such as, the way patients are recruited into a study, and the diagnosis of the disease. The Cox model is popular as it is robust, the estimated hazards are always non-negative and the hazard ratio can be calculated.

Logistic regression is applied when the investigators examine the relationship between risk factors and various disease events. The ability to consider the time element of event occurrences by proportional hazards models has meant that logistic regression has played a less important role in the analysis of survival data. [9] The Cox model is preferred over the logistic model, which ignores survival time and censoring information. [10] Given a Cox model and the coefficients, we can subsequently estimate the baseline hazard function and the survival curves.

   Log Rank Test Top

The log rank test (also known as the Mantel log-rank test, the Cox Mantel log-rank test, or the Mantel-Haenszel test) is a form of Chi-square test. [11] It calculates a test statistic for testing a null hypothesis that the survival curves are the same for all groups, in other words, to test a null hypothesis where there is no difference between the populations in the probability of an event at any time point. For each time point the observed number of deaths in each group and the number expected if there has been no difference, are calculated. The number of expected is calculated as the proportion of subjects who are at risk at a given time point multiplied by the total number of events at that point. The log rank test is based on the same assumptions as the hazard ratio that the survival probabilities are the same for subjects early and late in the study, and the events happen at the time specified. The test is more likely to detect a difference between groups when the risk of an event is consistently greater for one group than another. It is unlikely to detect a difference when survival curves cross. Hence it is useful to plot survival curves when analyzing survival data. Under the null hypothesis, the log-rank statistic is approximately chi-square with one degree of freedom. Thus, a P-value for the log-rank test is determined from tables of the chi-square distribution.

There are other tests for survival data. One of the important one is the 'Peto test'. It is an alternative to the log-rank test. In contrast to the log-rank test, the Pito test uses a weighted average of the observed minus expected score. It places more emphasis on the information at the beginning of the survival curve where the number at risk is large.

   Discussion Top

Survival analysis is a very good tool when a researcher takes into account the time till an event occurs and the censored data. There are some common mistakes performed by researchers when applying tools of survival analysis for their research. [12] The first being, only data related to an event of interest occurring is reported. The time of the event is not mentioned. How long patients were observed with no events occurring is not considered. It is evident that events would be observed more frequently in patients with longer follow-up times than in patients with a short follow-up. Evaluation of raw event frequencies without mention of time will produce biased results. Similarly, when we get biased results, no distinction is made as to whether a patient suffered an event or was censored. The third error is not including the censored data in the analysis. If we take a specific proportion of events from both the groups, without taking into account the censoring, a different method of statistics should be employed, and not the survival analysis technique.

   Conclusion Top

There are three primary goals of survival analysis, to estimate and interpret survival and / or hazard functions from the survival data; to compare survival and / or hazard functions, and to assess the relationship of explanatory variables to survival time. Survival analysis provides a great tool for analyzing the time to an event type of data, which is very common in any clinical trial. Researchers are not using it frequently because they are not confident in the theory of its application and its interpretation. There are books available that provide the basic knowledge on survival analysis. They should not make common mistakes while applying these tools to their data.

   References Top

1.Lee HP. On clinical trials and survival analysis. Singapore Med J 1982;23:164-7.  Back to cited text no. 1
2.Smith T, Smith B. Survival analysis and the application of Cox′s proportional hazards modeling using SAS. Statistics, Data Analysis, and Data Mining.  Back to cited text no. 2
3.Survival analysis. A self-learning text. Kleinbaum DG, editor. USA: Springer; 2005.  Back to cited text no. 3
4.Booth JG, Hirschl TA. Life Table analysis using weighted survey data. June 2005. Available from URL: http://bscb.cornell.edu/~booth/papers/lifetable.pdf. [Last accessed on 2011 Sep 06].  Back to cited text no. 4
5.Ives M, Funk R, Dennis M. Survival Analysis/Life Tables. Available from URL: http://www.chestnut.org/li/downloads/training_memos/survival_analysis.pdf. [Last accessed on 2011 Sep 06].  Back to cited text no. 5
6.Prinja S, Gupta N, Varma R. Censoring in clinical trials: Review of survival analysis techniques. Indian J Community Med 2010;35:217-21.  Back to cited text no. 6
[PUBMED]  Medknow Journal  
7.Spruance SL, Reid JE, Grace M, Samore M. Hazard ratio in clinical trials. Antimicrob Agents Chemother 2004;48:2787-92.  Back to cited text no. 7
8.Cox DR, Oakes D. Analysis of survival data. London, England: Chapman and Hall; 2001  Back to cited text no. 8
9.Abbott RD. Logistic regression in survival analysis. Am J Epidemiol 1985;121:465-71.  Back to cited text no. 9
10.Seminar in Statistics: Survival Analysis Presentation 3: The Cox proportional hazard model and its characteristics. In: Fabsic P, Evgeny V, Zemmer K, editors. Zurich; 2011.  Back to cited text no. 10
11.An Introduction to Survival Analysis. Mark Stevenson. EpiCentre, IVABS, Massey University. June 4, 2009.  Back to cited text no. 11
12.Zwiener I, Blettner M, Hommel G. Survival analysis. Dtsch Arztebl Int 2011;108:163-9.  Back to cited text no. 12

This article has been cited by
1 Urachal carcinoma: A novel staging system utilizing the National Cancer Database
Vladimir Limonnik, Arash Samiei, Stephen Abel, Rodney E. Wegner, Goutham Vemana, Shifeng S. Mao
Cancer Medicine. 2022;
[Pubmed] | [DOI]
2 A workflow for the joint modeling of longitudinal and event data in the development of therapeutics: Tools, statistical methods, and diagnostics
Kirill Zhudenkov, Sergey Gavrilov, Alina Sofronova, Oleg Stepanov, Nataliya Kudryashova, Gabriel Helmlinger, Kirill Peskov
CPT: Pharmacometrics & Systems Pharmacology. 2022;
[Pubmed] | [DOI]
3 CondiS: A conditional survival distribution-based method for censored data imputation overcoming the hurdle in machine learning-based survival analysis
Yizhuo Wang, Christopher R. Flowers, Ziyi Li, Xuelin Huang
Journal of Biomedical Informatics. 2022; : 104117
[Pubmed] | [DOI]
4 Usability of deep learning and H&E images predict disease outcome-emerging tool to optimize clinical trials
Talha Qaiser, Ching-Yi Lee, Michel Vandenberghe, Joe Yeh, Marios A. Gavrielides, Jason Hipp, Marietta Scott, Joachim Reischl
npj Precision Oncology. 2022; 6(1)
[Pubmed] | [DOI]
5 Machine Learning vs. survival analysis models: a study on right censored heart failure data
B. Srujana, Dhananjay Verma, Sameen Naqvi
Communications in Statistics - Simulation and Computation. 2022; : 1
[Pubmed] | [DOI]
6 CondiS web app: imputation of censored lifetimes for machine learning-based survival analysis
Yizhuo Wang, Christopher R Flowers, Ziyi Li, Xuelin Huang, Zhiyong Lu
Bioinformatics. 2022;
[Pubmed] | [DOI]
7 Novel Application of Survival Models for Predicting Microbial Community Transitions with Variable Selection for Environmental DNA
Paul Bjorndahl, Joseph P. Bielawski, Lihui Liu, Wei Zhou, Hong Gu, Isaac Cann
Applied and Environmental Microbiology. 2022; 88(6)
[Pubmed] | [DOI]
8 Survival of the Recidivistic? Revealing Factors Associated with the Criminal Career Length of Multiple Homicide Offenders
Gian Maria Campedelli, Enzo Yaksic
Homicide Studies. 2022; 26(3): 244
[Pubmed] | [DOI]
9 Learning problem solving to manage school-life challenges: The impact on student success in college
Adam Burke, Susan Stewart
Active Learning in Higher Education. 2022; : 1469787422
[Pubmed] | [DOI]
10 Personalized targeted therapy prescription in colorectal cancer using algorithmic analysis of RNA sequencing data
Maxim Sorokin, Marianna Zolotovskaia, Daniil Nikitin, Maria Suntsova, Elena Poddubskaya, Alexander Glusker, Andrew Garazha, Alexey Moisseev, Xinmin Li, Marina Sekacheva, David Naskhletashvili, Alexander Seryakov, Ye Wang, Anton Buzdin
BMC Cancer. 2022; 22(1)
[Pubmed] | [DOI]
11 Privacy-aware multi-institutional time-to-event studies
Julian Späth, Julian Matschinske, Frederick K. Kamanu, Sabina A. Murphy, Olga Zolotareva, Mohammad Bakhtiari, Elliott M. Antman, Joseph Loscalzo, Alissa Brauneck, Louisa Schmalhorst, Gabriele Buchholtz, Jan Baumbach, Thomas Schmidt
PLOS Digital Health. 2022; 1(9): e0000101
[Pubmed] | [DOI]
12 An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories
Andrea Baroni, Artem Glukhov, Eduardo Pérez, Christian Wenger, Enrico Calore, Sebastiano Fabio Schifano, Piero Olivo, Daniele Ielmini, Cristian Zambelli
Frontiers in Neuroscience. 2022; 16
[Pubmed] | [DOI]
13 An evaluation of an apprentice selection process
Juliet I. Puchert, Roelf van Niekerk, Kim Viljoen
Acta Commercii. 2022; 22(1)
[Pubmed] | [DOI]
14 Evaluating Sex Differences in the Effect of Increased Systolic Blood Pressure on the Risk of Cardiovascular Disease in Asian Populations: A Systematic Review and Meta-Analysis
Yu-Ting Lin, Yun-Ru Chen, Yu-Chung Wei
Global Heart. 2022; 17(1): 70
[Pubmed] | [DOI]
15 Morphological Spectrum and Survival Analysis of Diffuse Midline Glioma With H3K27M Mutation
Usman Hassan,Maliha Latif,Irfan Yousaf,Saad Bin Anees,Sajid Mushtaq,Noreen Akhtar,Asif Loya
Cureus. 2021;
[Pubmed] | [DOI]
16 Safety, Immunogenicity and Antibody Persistence of Rift Valley Fever Virus Clone 13 Vaccine in Sheep, Goats and Cattle in Tanzania
Calvin Sindato, Esron D. Karimuribo, Emmanuel S. Swai, Leonard E. G. Mboera, Mark M. Rweyemamu, Janusz T. Paweska, Jeremy Salt
Frontiers in Veterinary Science. 2021; 8
[Pubmed] | [DOI]
17 Eye-Tracker Analysis of the Contrast Sensitivity of Anomalous and Normal Trichromats: A Loglinear Examination with Landolt-C Figures
László Sipos,Attila Gere,Zoltán Kókai,Ákos Nyitrai,Sándor Kovács,Ágnes Urbin,Krisztián Samu,Klára Wenzel
Applied Sciences. 2021; 11(7): 3200
[Pubmed] | [DOI]
18 Large-Scale Transcriptomics-Driven Approach Revealed Overexpression of CRNDE as a Poor Survival Prognosis Biomarker in Glioblastoma
Maxim Sorokin,Mikhail Raevskiy,Alja Zottel,Neja Šamec,Marija Skoblar Vidmar,Alenka Matjašic,Andrej Zupan,Jernej Mlakar,Maria Suntsova,Denis V. Kuzmin,Anton Buzdin,Ivana Jovcevska
Cancers. 2021; 13(14): 3419
[Pubmed] | [DOI]
19 A High-Stakes Approach to Response Time Effort in Low-Stakes Assessment
Munevver Ilgun
International Journal of Educational Methodology. 2021; 7(4): 571
[Pubmed] | [DOI]
20 Using median survival in meta-analysis of experimental time-to-event data
Theodore C. Hirst, Emily S. Sena, Malcolm R. Macleod
Systematic Reviews. 2021; 10(1)
[Pubmed] | [DOI]
21 Biochemical recurrence after radical prostatectomy according to nadir prostate specific antigen value
Jae Hoon Chung,Jae Yong Jeong,Ji Youl Lee,Was Song,Minyong Kang,Hyun Hwan Sung,Hwang Gyun Jeon,Byong Chang Jeong,Seong IL Seo,Hyun Moo Lee,Seong Soo Jeon,Henry Woo
PLOS ONE. 2021; 16(5): e0249709
[Pubmed] | [DOI]
22 Influence of Load on Reliability of Storage Area Networks
Guixiang Lv, Liudong Xing
International Journal of Mathematical, Engineering and Management Sciences. 2021; 6(6): 1533
[Pubmed] | [DOI]
23 Methodological Issues in Randomized Clinical Trials for Prodromal Alzheimerćs and Parkinsonćs Disease
Camila Henriques de Aquino
Frontiers in Neurology. 2021; 12
[Pubmed] | [DOI]
24 Causal survival analysis: A guide to estimating intention-to-treat and per-protocol effects from randomized clinical trials with non-adherence
Eleanor J Murray,Ellen C Caniglia,Lucia C Petito
Research Methods in Medicine & Health Sciences. 2021; 2(1): 39
[Pubmed] | [DOI]
25 Probability of receiving a high cumulative radiation dose and primary clinical indication of CT examinations: a 5-year observational cohort study
Cécile R L P N Jeukens,Hub Boere,Bart A J M Wagemans,Patty J Nelemans,Estelle C Nijssen,Rebecca Smith-Bindman,Joachim E Wildberger,Anna M Sailer
BMJ Open. 2021; 11(1): e041883
[Pubmed] | [DOI]
26 Methods to Analyze Time-to-Event Data: The Cox Regression Analysis
Samar Abd ElHafeez, Graziella D’Arrigo, Daniela Leonardis, Maria Fusaro, Giovanni Tripepi, Stefanos Roumeliotis, Alexandros Georgakilas
Oxidative Medicine and Cellular Longevity. 2021; 2021: 1
[Pubmed] | [DOI]
27 The Effect of High Glucose Intake on Weight Gain in Very Low Birth Weight Neonates: A Randomized Controlled Trial
Farhad Choobdar, Ali Mazouri, Farnaz Firuzian, Maral Ghasemzadeh, Zahra Vahedi
Clinical Pediatrics. 2021; 60(14): 577
[Pubmed] | [DOI]
28 Missing data treatments in intervention studies: What was, what is, and what should be
Charlie Rioux,Todd D. Little
International Journal of Behavioral Development. 2021; 45(1): 51
[Pubmed] | [DOI]
29 A neural system dynamics modeling platform and its applications in randomized controlled trial data analysis
Nadira Hamid,Joydeep Sarkar,Bjorn Redfors,Anisha Balani,Rajagopalan Ramaswamy,Abhijit Ghosh,Maria Alu,Aaron Crowley,Yiran Zhang,Martin B. Leon,Gregg W. Stone,Juan F. Granada
Informatics in Medicine Unlocked. 2021; 24: 100612
[Pubmed] | [DOI]
30 Predicting outcomes in anal cancer patients using multi-centre data and distributed learning – A proof-of-concept study
Ananya Choudhury,Stelios Theophanous,Per-Ivar Lřnne,Robert Samuel,Marianne Grřnlie Guren,Maaike Berbee,Peter Brown,John Lilley,Johan van Soest,Andre Dekker,Alexandra Gilbert,Eirik Malinen,Leonard Wee,Ane L. Appelt
Radiotherapy and Oncology. 2021; 159: 183
[Pubmed] | [DOI]
31 Essais contrôlés randomisés : quelques clés méthodologiques pour comprendre
C. Gauvain
Revue des Maladies Respiratoires Actualités. 2021; 13(2): 2S55
[Pubmed] | [DOI]
32 Radiomics, machine learning, and artificial intelligence—what the neuroradiologist needs to know
Matthias W. Wagner,Khashayar Namdar,Asthik Biswas,Suranna Monah,Farzad Khalvati,Birgit B. Ertl-Wagner
Neuroradiology. 2021;
[Pubmed] | [DOI]
33 Glioma segmentation of optimized 3D U-net and prediction of multi-modal survival time
Qihong Liu,Kai Liu,Antonio Bolufé-Röhler,Jing Cai,Ling He
Neural Computing and Applications. 2021;
[Pubmed] | [DOI]
34 Cure models to estimate time until hospitalization due to COVID-19
Maria Pedrosa-Laza,Ana López-Cheda,Ricardo Cao
Applied Intelligence. 2021;
[Pubmed] | [DOI]
35 Use of Time-to-Event Analysis to Develop On-Scene Return of Spontaneous Circulation Prediction for Out-of-Hospital Cardiac Arrest Patients
Jeong Ho Park,Jinwook Choi,SangMyeong Lee,Sang Do Shin,Kyoung Jun Song
Annals of Emergency Medicine. 2021;
[Pubmed] | [DOI]
36 Incidence of morbidity and mortality in calves from birth to six months of age and associated risk factors on dairy farms in Hawassa city, southern Ethiopia
Debele Hordofa, Fufa Abunna, Bekele Megersa, Rahmeto Abebe
Heliyon. 2021; : e08546
[Pubmed] | [DOI]
37 Deep Learning for Cardiovascular Risk Stratification
Daphne E. Schlesinger,Collin M. Stultz
Current Treatment Options in Cardiovascular Medicine. 2020; 22(8)
[Pubmed] | [DOI]
38 Business or Basic Needs? The Impact of Loan Purpose on Social Crowdfunding Platforms
Hadar Gafni,Marek Hudon,Anaďs Périlleux
Journal of Business Ethics. 2020;
[Pubmed] | [DOI]
39 A continuous-time Markov model approach for modeling myelodysplastic syndromes progression from cross-sectional data
G. Nicora,F. Moretti,E. Sauta,M. Della Porta,L. Malcovati,M. Cazzola,S. Quaglini,R. Bellazzi
Journal of Biomedical Informatics. 2020; : 103398
[Pubmed] | [DOI]
40 A Practical Perspective on the Concordance Index for the Evaluation and Selection of Prognostic Time-to-Event Models
Enrico Longato,Martina Vettoretti,Barbara Di Camillo
Journal of Biomedical Informatics. 2020; : 103496
[Pubmed] | [DOI]
41 Dynamic Prediction in Clinical Survival Analysis Using Temporal Convolutional Networks
Daniel Jarrett,Jinsung Yoon,Mihaela van der Schaar
IEEE Journal of Biomedical and Health Informatics. 2020; 24(2): 424
[Pubmed] | [DOI]
42 Development and internal validation of a prognostic model for mortality of patients with abdominal aortic aneurysms treated with endovascular aneurysm repair
Lorenz Meuli,Ly-Mee Yu,Thomas R. Wyss,Juerg Schmidli,Vladimir Makaloski
Vasa. 2020; : 1
[Pubmed] | [DOI]
43 Time-to-event survival statistics in ophthalmology: Methodological research
Christopher J. Layton,Danielle M. Layton
Clinical & Experimental Ophthalmology. 2020; 48(9): 1136
[Pubmed] | [DOI]
44 Detecting Cancer Survival Related Gene Markers Based on Rectified Factor Network
Lingtao Su,Guixia Liu,Juexin Wang,Jianjiong Gao,Dong Xu
Frontiers in Bioengineering and Biotechnology. 2020; 8
[Pubmed] | [DOI]
45 On the Use of Cox Regression for Statistical Analysis of Fatigue Life Results
K. Narynbek Ulu,B. Huneau,E. Verron,A. S. Béranger,P. Heuillet
Journal of Testing and Evaluation. 2020; 48(2): 20180541
[Pubmed] | [DOI]
46 Exploration of morbidity, suicide and all-cause mortality in a Scottish forensic cohort over 20 years
Cheryl Rees,Lindsay Thomson
BJPsych Open. 2020; 6(4)
[Pubmed] | [DOI]
47 Application of Artificial Intelligence Techniques to Predict Survival in Kidney Transplantation: A Review
Covadonga Díez-Sanmartín,Antonio Sarasa Cabezuelo
Journal of Clinical Medicine. 2020; 9(2): 572
[Pubmed] | [DOI]
48 Prognostic implications of aberrantly expressed methylation-driven genes in hepatocellular carcinoma: A study based on The Cancer Genome Atlas
Jinzhong Li,Ning Chen,Xiaobing Gong
Molecular Medicine Reports. 2019;
[Pubmed] | [DOI]
49 Cancer recurrence times from a branching process model
Stefano Avanzini,Tibor Antal,Philip K Maini
PLOS Computational Biology. 2019; 15(11): e1007423
[Pubmed] | [DOI]
50 Survival analysis of confirmed elephant endotheliotropic herpes virus cases in Thailand from 2006 – 2018
Khajohnpat Boonprasert,Veerasak Punyapornwithaya,Pallop Tankaew,Taweepoke Angkawanish,Supaphen Sriphiboon,Chatchote Titharam,Janine L. Brown,Chaleamchat Somgird,Graciela Andrei
PLOS ONE. 2019; 14(7): e0219288
[Pubmed] | [DOI]
51 Discovery and validation of methylated-differentially expressed genes in Helicobacter pylori-induced gastric cancer
Duanrui Liu,Xiaoli Ma,Fei Yang,Dongjie Xiao,Yanfei Jia,Yunshan Wang
Cancer Gene Therapy. 2019;
[Pubmed] | [DOI]
52 Identification of cancer prognosis-associated lncRNAs based on the miRNA-TF co-regulatory motifs and dosage sensitivity
Yinling Zhu,Siyao Dong,Yanjiao Zhu,Yichuan Zhao,Yan Xu
Molecular Omics. 2019;
[Pubmed] | [DOI]
53 Modeling High Wind Speed Shut-Down Events Using Meso-Scale Wind Profiles and Survival Analysis
Matthew Groch,Hendrik J. Vermeulen
IEEE Transactions on Power Systems. 2019; 34(6): 4955
[Pubmed] | [DOI]
54 Clinical outcome after mosaicplasty of knee articular cartilage defects of patellofemoral joint versus tibiofemoral joint
Eirik Solheim,Janne Hegna,Eivind Inderhaug
Journal of Orthopaedics. 2019;
[Pubmed] | [DOI]
55 Prognostic value of differentially methylated gene profiles in bladder cancer
Zeyu Yang,Anwei Liu,Qiao Xiong,Yongping Xue,Fei Liu,Shuxiong Zeng,Zhensheng Zhang,Yunfei li,Yinghao Sun,Chuanliang Xu
Journal of Cellular Physiology. 2019;
[Pubmed] | [DOI]
56 Identification of methylation-driven genes related to prognosis in clear-cell renal cell carcinoma
Jia Wang,Qiujing Zhang,Qingqing Zhu,Chengxiang Liu,Xueli Nan,Fuxia Wang,Lihua Fang,Jie Liu,Chao Xie,Shuai Fu,Bao Song
Journal of Cellular Physiology. 2019;
[Pubmed] | [DOI]
57 Association of Survival With Femoropopliteal Artery Revascularization With Drug-Coated Devices
Eric A. Secemsky,Harun Kundi,Ido Weinberg,Michael R. Jaff,Anna Krawisz,Sahil A. Parikh,Joshua A. Beckman,Jihad Mustapha,Kenneth Rosenfield,Robert W. Yeh
JAMA Cardiology. 2019;
[Pubmed] | [DOI]
58 Determinants of different birth intervals of ever married women: Evidence from Bangladesh
Benojir Ahammed,Rasel Kabir,Menhazul Abedin,Mohammad Ali,Akhtarul Islam
Clinical Epidemiology and Global Health. 2019;
[Pubmed] | [DOI]
59 The impact of morcellation on survival outcomes of undiagnosed uterine sarcoma
Francesco Raspagliesi,Giorgio Bogani,Domenica Lorusso
Gynecologic Oncology Reports. 2018; 23: 37
[Pubmed] | [DOI]
60 Local Recurrence After Microwave Ablation of Lung Malignancies: A Systematic Review
David B. Nelson,Alda L. Tam,Kyle G. Mitchell,David C. Rice,Reza J. Mehran,Boris Sepesi,Mara B. Antonoff,Ara A. Vaporciyan,Wayne L. Hofstetter
The Annals of Thoracic Surgery. 2018;
[Pubmed] | [DOI]
61 Prognostic value of aberrantly expressed methylation gene profiles in lung squamous cell carcinoma: A study based on The Cancer Genome Atlas
Chundi Gao,Jing Zhuang,Chao Zhou,Ke Ma,Minzhang Zhao,Cun Liu,Lijuan Liu,Huayao Li,Fubin Feng,Changgang Sun
Journal of Cellular Physiology. 2018;
[Pubmed] | [DOI]
62 A novel method as a diagnostic tool for the detection of influential observations in the Cox proportional hazards model
Nuriye Sancar,Deniz Inan
Quality & Quantity. 2018;
[Pubmed] | [DOI]
63 The effects of lower CD34 yields after lowe dose G-CSF induction on long-term autologous stem cell transplantation outcome: A single center study
Mohammad Vaezi,Mohammad Shakouri,Maryam Souri,Mohammad Amin Setaredan,Seyed Asadollah Mossavi,Saeed Mohammadi,Kamran Alimoghaddam,Ardeshir Ghavamzadeh
Transfusion and Apheresis Science. 2018;
[Pubmed] | [DOI]
64 Choosing statistical tests for survival analysis
Ilker  Etikan
Biometrics & Biostatistics International Journal. 2018; 7(5)
[Pubmed] | [DOI]
65 Effect of collaborative depression treatment on risk for diabetes: A 9-year follow-up of the IMPACT randomized controlled trial
Tasneem Khambaty,Christopher M. Callahan,Jesse C. Stewart,Jerson Laks
PLOS ONE. 2018; 13(8): e0200248
[Pubmed] | [DOI]
66 Identification of methylation sites and signature genes with prognostic value for luminal breast cancer
Bin Xiao,Lidan Chen,Yongli Ke,Jianfeng Hang,Ling Cao,Rong Zhang,Weiyun Zhang,Yang Liao,Yang Gao,Jianyun Chen,Li Li,Wenbo Hao,Zhaohui Sun,Linhai Li
BMC Cancer. 2018; 18(1)
[Pubmed] | [DOI]
67 Exploring the key genes and signaling transduction pathways related to the survival time of glioblastoma multiforme patients by a novel survival analysis model
Yuan Xia,Chuanwei Yang,Nan Hu,Zhenzhou Yang,Xiaoyu He,Tingting Li,Le Zhang
BMC Genomics. 2017; 18(S1)
[Pubmed] | [DOI]
68 Estimating Dynamic Signals From Trial Data With Censored Values
Ali Yousefi,Darin D. Dougherty,Emad N. Eskandar,Alik S. Widge,Uri T. Eden
Computational Psychiatry. 2017; 1: 58
[Pubmed] | [DOI]
69 Feature selection through validation and un-censoring of endovascular repair survival data for predicting the risk of re-intervention
Omneya Attallah,Alan Karthikesalingam,Peter J. E. Holt,Matthew M. Thompson,Rob Sayers,Matthew J. Bown,Eddie C. Choke,Xianghong Ma
BMC Medical Informatics and Decision Making. 2017; 17(1)
[Pubmed] | [DOI]
70 Le concept de l’analyse de survie : vérifier l’applicabilité
P. Mouracade
Progrčs en Urologie. 2017; 27(6): 331
[Pubmed] | [DOI]
71 DCE-MRI prediction of survival time for patients with glioblastoma multiforme: using an adaptive neuro-fuzzy-based model and nested model selection technique
Azimeh N.V. Dehkordi,Alireza Kamali-Asl,Ning Wen,Tom Mikkelsen,Indrin J. Chetty,Hassan Bagher-Ebadian
NMR in Biomedicine. 2017; : e3739
[Pubmed] | [DOI]
72 Receipt of thyroid hormone deficiency treatment and risk of herpes zoster
Shao-Chung V. Hsia,Lie Hong Chen,Hung-Fu Tseng
International Journal of Infectious Diseases. 2017; 59: 90
[Pubmed] | [DOI]
73 Quantifying Domestic Used Electronics Flows using a Combination of Material Flow Methodologies: A US Case Study
T. Reed Miller,Huabo Duan,Jeremy Gregory,Ramzy Kahhat,Randolph Kirchain
Environmental Science & Technology. 2016;
[Pubmed] | [DOI]
74 Effect of temperature and relative humidity on the development times and survival of Synopsyllus fonquerniei and Xenopsylla cheopis, the flea vectors of plague in Madagascar
Katharina S. Kreppel,Sandra Telfer,Minoarisoa Rajerison,Andy Morse,Matthew Baylis
Parasites & Vectors. 2016; 9(1)
[Pubmed] | [DOI]
75 Anticoagulants effect on pre-adult growth of Aedes aegypti using artificial membrane feeding with stochastic approach
A. Ahdika,N. Lusiyana,M.H.S. Kurniawan
Model Assisted Statistics and Applications. 2016; 11(4): 339
[Pubmed] | [DOI]
76 Survival functions for defining a clinical management Lost To Follow-Up (LTFU) cut-off in Antiretroviral Therapy (ART) program in Zomba, Malawi
Beth Rachlis,Donald C. Cole,Monique van Lettow,Michael Escobar
BMC Medical Informatics and Decision Making. 2016; 16(1)
[Pubmed] | [DOI]
77 Duration of disease influences survival to discharge of Thoroughbred mares with surgically treated large colon volvulus
E. S. Hackett,R. M. Embertson,S. A. Hopper,J. B. Woodie,A. J. Ruggles
Equine Veterinary Journal. 2015; : n/a
[Pubmed] | [DOI]
78 Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A Clinicianćs Perspective
John Kang,Russell Schwartz,John Flickinger,Sushil Beriwal
International Journal of Radiation Oncology*Biology*Physics. 2015; 93(5): 1127
[Pubmed] | [DOI]
79 Data Mining of Gene Arrays for Biomarkers of Survival in Ovarian Cancer
Clare Coveney,David Boocock,Robert Rees,Suha Deen,Graham Ball
Microarrays. 2015; 4(3): 324
[Pubmed] | [DOI]
80 Bayesian neural network approach for determining the risk of re-intervention after endovascular aortic aneurysm repair
Omneya Attallah,Xianghong Ma
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2014; 228(9): 857
[Pubmed] | [DOI]
81 Topic modeling for cluster analysis of large biological and medical datasets
Weizhong Zhao,Wen Zou,James J Chen
BMC Bioinformatics. 2014; 15(Suppl 11): S11
[Pubmed] | [DOI]
82 Immediate Rehabilitation of Completely Edentulous Jaws With Fixed Prostheses Supported by Implants Placed Into Fresh Extraction Sockets and in Healed Sites
Ugo Covani,Bruno Orlando,Aniello D'Ambrosio,Vincenzo Bucci Sabattini,Antonio Barone
Implant Dentistry. 2012; 21(4): 272
[Pubmed] | [DOI]
83 Research on the Indices for Demonstrating Cell Conditions
Ik-Hyun Kim,Sung-Bum Pan
Journal of Sensor Science and Technology. 2012; 21(5): 324
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    History of Survi...
   Life Table Analysis
    Some Common Term...
    Cox Proportional...
   Log Rank Test

 Article Access Statistics
    PDF Downloaded5070    
    Comments [Add]    
    Cited by others 83    

Recommend this journal